Emotion recognition method using entropy analysis of EEG signals
نویسنده
چکیده
This paper proposes an emotion recognition system using EEG signals, therefore a new approach to emotion state analysis by approximate (ApEn) and wavelet entropy (WE) is described. We have used EEG signals recorded during emotion in five channels (FP1, FP2, T3, T4 and Pz), under pictures induction environment (calmneutral and negative excited) for participants. After a brief introduction to the concept, the ApEn and WE were extracted from two different EEG time series. The result showed that, the classification accuracy in two emotion states was 73.25% using the support vector machine (SVM) classifier. The simulations showed that the classification accuracy is good and the proposed methods are effective. During an emotion, the EEG is less complex compared to the normal, indicating reduction in active neuronal process in the brain.
منابع مشابه
A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملAssessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis
Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...
متن کاملبهبود تشخیص خودکار احساسات با استفاده از سیگنالEEG
Emotions play an important role in daily life of human, so the need and importance of automatic emotion recognition have grown with increasing role of Human Computer Interaction (HCI) applications. Since emotion recognition using EEG can show inner emotions, this method is more attention from other ways. In consideration to lack of emotion induction collection for doing such researches at Irani...
متن کاملEmotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain
This paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD). By using EMD, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) automatically. Multidimensional information of IMF is utilized as features, the first difference of time series, the first difference of phase, and the normalized energy. The performance of the pr...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کامل